资源论文An Active Learning Framework using Sparse-Graph Codes for Sparse Polynomials and Graph Sketching

An Active Learning Framework using Sparse-Graph Codes for Sparse Polynomials and Graph Sketching

2020-02-04 | |  79 |   45 |   0

Abstract

 Let image.png be an n-variate polynomial consisting of image.png monomials, in which only image.png coefficients are non-zero. The goal is to learn the polynomial by querying the values of f . We introduce an active learning framework that is associated with a low query cost and computational runtime. The significant savings are enabled by leveraging sampling strategies based on modern coding theory, specifically, the design and analysis of sparse-graph codes, such as Low-Density-Parity-Check (LDPC) codes, which represent the state-of-the-art of modern packet communications. More significantly, we show how this design perspective leads to exciting, and to the best of our knowledge, largely unexplored intellectual connections between learning and coding. The key is to relax the worst-case assumption with an ensemble-average setting, where the polynomial is assumed to be drawn uniformly at random from the ensemble of all polynomials (of a given size n and sparsity s). Our framework succeeds with high probability with respect to the polynomial ensemble with sparsity up to image.png(0, 1), where f is exactly learned using O(ns) queries in time O(ns log s), even if the queries are perturbed by Gaussian noise. We further apply the proposed framework to graph sketching, which is the problem of inferring sparse graphs by querying graph cuts. By writing the cut function as a polynomial and exploiting the graph structure, we propose a sketching algorithm to learn the an arbitrary n-node unknown graph using only few cut queries, which scales almost linearly in the number of edges and sub-linearly in the graph size n. Experiments on real datasets show significant reductions in the runtime and query complexity compared with competitive schemes.

上一篇:Pointer Networks

下一篇:Recovering Communities in the General Stochastic Block Model Without Knowing the Parameters

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...