资源算法densenet-tensorflow

densenet-tensorflow

2020-02-05 | |  55 |   0 |   0

DenseNet-tensorflow

This repository contains the tensorflow implementation for the paper Densely Connected Convolutional Networks.

The code is developed based on Yuxin Wu's implementation of ResNet (https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet).

Citation:

 @inproceedings{huang2017densely,
      title={Densely connected convolutional networks},
      author={Huang, Gao and Liu, Zhuang and van der Maaten, Laurens and Weinberger, Kilian Q },
      booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
      year={2017}
  }

Dependencies:

Train a DenseNet (L=40, k=12) on CIFAR-10+ using

python cifar10-densenet.py

In our experiment environment (cudnn v5.1, CUDA 7.5, one TITAN X GPU), the code runs with speed 5iters/s when batch size is set to be 64. The hyperparameters are identical to the original [torch implementation] (https://github.com/liuzhuang13/DenseNet).

Training curves on CIFAR-100+ (~26.36% after 300 epochs)

图片.png

Differences compared to the original [torch implementation] (https://github.com/liuzhuang13/DenseNet)

  • Preprocessing is not channel-wise, instead we use mean and variances of images.

  • There is no momentum and weight decay applied on the batch normalization parameters (gamma and beta), whereas torch vertison uses both momentum and weight decay on those.

Questions?

Please drop me a line if you have any questions!


上一篇:DenseNet-Caffe

下一篇:DenseNet-Keras

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...

  • flaireWebSite

    flaireWebSite

  • caffe_ocr

    caffe_ocr是一个对现有主流ocr算法研究实验性的项...

  • DeepFaceLab_Linux

    DeepFaceLab的Linux Ubuntu 版本