资源论文Inference for determinantal point processes without spectral knowledge

Inference for determinantal point processes without spectral knowledge

2020-02-05 | |  86 |   51 |   0

Abstract

 Determinantal point processes (DPPs) are point process models that naturally encode diversity between the points of a given realization, through a positive definite kernel K. DPPs possess desirable properties, such as exact sampling or analyticity of the moments, but learning the parameters of kernel K through likelihood-based inference is not straightforward. First, the kernel that appears in the likelihood is not K, but another kernel L related to K through an often intractable spectral decomposition. This issue is typically bypassed in machine learning by directly parametrizing the kernel L, at the price of some interpretability of the model parameters. We follow this approach here. Second, the likelihood has an intractable normalizing constant, which takes the form of a large determinant in the case of a DPP over a finite set of objects, and the form of a Fredholm determinant in the case of a DPP over a continuous domain. Our main contribution is to derive bounds on the likelihood of a DPP, both for finite and continuous domains. Unlike previous work, our bounds are cheap to evaluate since they do not rely on approximating the spectrum of a large matrix or an operator. Through usual arguments, these bounds thus yield cheap variational inference and moderately expensive exact Markov chain Monte Carlo inference methods for DPPs.

上一篇:Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering

下一篇:Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...