资源论文Fast and Flexible Monotonic Functions with Ensembles of Lattices

Fast and Flexible Monotonic Functions with Ensembles of Lattices

2020-02-05 | |  79 |   49 |   0

Abstract 

For many machine learning problems, there are some inputs that are known to be positively (or negatively) related to the output, and in such cases training the model to respect that monotonic relationship can provide regularization, and makes the model more interpretable. However, flexible monotonic functions are computationally challenging to learn beyond a few features. We break through this barrier by learning ensembles of monotonic calibrated interpolated look-up tables (lattices). A key contribution is an automated algorithm for selecting feature subsets for the ensemble base models. We demonstrate that compared to random forests, these ensembles produce similar or better accuracy, while providing guaranteed monotonicity consistent with prior knowledge, smaller model size and faster evaluation.

上一篇:The Multiscale Laplacian Graph Kernel

下一篇:Recovery Guarantee of Non-negative Matrix Factorization via Alternating Updates

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...