资源论文Measuring the reliability of MCMC inference with bidirectional Monte Carlo

Measuring the reliability of MCMC inference with bidirectional Monte Carlo

2020-02-05 | |  57 |   37 |   0

Abstract 

Markov chain Monte Carlo (MCMC) is one of the main workhorses of probabilistic inference, but it is notoriously hard to measure the quality of approximate posterior samples. This challenge is particularly salient in black box inference methods, which can hide details and obscure inference failures. In this work, we extend the recently introduced bidirectional Monte Carlo [GGA15] technique to evaluate MCMC-based posterior inference algorithms. By running annealed importance sampling (AIS) chains both from prior to posterior and vice versa on simulated data, we upper bound in expectation the symmetrized KL divergence between the true posterior distribution and the distribution of approximate samples. We integrate our method into two probabilistic programming languages, WebPPL [GS] and Stan [CGHL+ p], and validate it on several models and datasets. As an example of how our method be used to guide the design of inference algorithms, we apply it to study the effectiveness of different model representations in WebPPL and Stan.

上一篇:Interpretable Distribution Features with Maximum Testing Power

下一篇:On Robustness of Kernel Clustering

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...