资源论文A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification

A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification

2020-02-05 | |  83 |   46 |   0

Abstract 

We present a general framework for classification of sparse and irregularly-sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixeddimensional feature spaces. To address these challenges, we propose an uncertaintyaware classification framework based on a special computational layer we refer to as the Gaussian process adapter that can connect irregularly sampled time series data to any black-box classifier learnable using gradient descent. We show how to scale up the required computations based on combining the structured kernel interpolation framework and the Lanczos approximation method, and how to discriminatively train the Gaussian process adapter in combination with a number of classifiers end-to-end using backpropagation.

上一篇:Online and Differentially-Private Tensor Decomposition

下一篇:Variational Bayes on Monte Carlo Steroids

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...