资源论文Fast Algorithms for Robust PCA via Gradient Descent

Fast Algorithms for Robust PCA via Gradient Descent

2020-02-05 | |  44 |   52 |   0

Abstract

 We consider the problem of Robust PCA in the fully and partially observed settings. Without corruptions, this is the well-known matrix completion problem. From a statistical standpoint this problem has been recently well-studied, and conditions on when recovery is possible (how many observations do we need, how many corruptions can we tolerate) via polynomial-time algorithms is by now understood. This paper presents and analyzes a non-convex optimization approach that greatly reduces the computational complexity of the above problems, compared to the best available algorithms. In particular, in the fully observed case, with r denoting rank and d dimension, we reduce the complexity from image.png– a big savings when the rank is big. For the partially observed case, we show the complexity of our algorithm is no more than image.png. Not only is this the best-known run-time for a provable algorithm under partial observation, but in the setting where r is small compared to d, it also allows for near-linear-in-d run-time that can be exploited in the fully-observed case as well, by simply running our algorithm on a subset of the observations.

上一篇:Robust k-means: a Theoretical Revisit Alexandros Georgogiannis

下一篇:Constraints Based Convex Belief Propagation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...