资源论文Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation

Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation

2020-02-05 | |  52 |   32 |   0

Abstract 

Estimators of information theoretic measures such as entropy and mutual information are a basic workhorse for many downstream applications in modern data science. State of the art approaches have been either geometric (nearest neighbor (NN) based) or kernel based (with a globally chosen bandwidth). In this paper, we combine both these approaches to design new estimators of entropy and mutual information that outperform state of the art methods. Our estimator uses local bandwidth choices of k-NN distances with a finite k, independent of the sample size. Such a local and data dependent choice improves performance in practice, but the bandwidth is vanishing at a fast rate, leading to a non-vanishing bias. We show that the asymptotic bias of the proposed estimator is universal; it is independent of the underlying distribution. Hence, it can be precomputed and subtracted from the estimate. As a byproduct, we obtain a unified way of obtaining both kernel and NN estimators. The corresponding theoretical contribution relating the asymptotic geometry of nearest neighbors to order statistics is of independent mathematical interest.

上一篇:Linear Relaxations for Finding Diverse Elements in Metric Spaces

下一篇:High-Rank Matrix Completion and Clustering under Self-Expressive Models

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...