资源论文Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization

Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization

2020-02-05 | |  58 |   53 |   0

Abstract

 We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast stochastic algorithms that provably converge to a stationary point for constant minibatches. Furthermore, using a variant of these algorithms, we obtain provably faster convergence than batch proximal gradient descent. Our results are based on the recent variance reduction techniques for convex optimization but with a novel analysis for handling nonconvex and nonsmooth functions. We also prove global linear convergence rate for an interesting subclass of nonsmooth nonconvex functions, which subsumes several recent works.

上一篇:Stochastic Structured Prediction under Bandit Feedback

下一篇:Guided Policy Search via Approximate Mirror Descent

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...