资源论文Spectral Learning of Dynamic Systems from Nonequilibrium Data

Spectral Learning of Dynamic Systems from Nonequilibrium Data

2020-02-05 | |  56 |   37 |   0

Abstract

 Observable operator models (OOMs) and related models are one of the most important and powerful tools for modeling and analyzing stochastic systems. They exactly describe dynamics of finite-rank systems and can be efficiently and consistently estimated through spectral learning under the assumption of identically distributed data. In this paper, we investigate the properties of spectral learning without this assumption due to the requirements of analyzing large-time scale systems, and show that the equilibrium dynamics of a system can be extracted from nonequilibrium observation data by imposing an equilibrium constraint. In addition, we propose a binless extension of spectral learning for continuous data. In comparison with the other continuous-valued spectral algorithms, the binless algorithm can achieve consistent estimation of equilibrium dynamics with only linear complexity.

上一篇:Graphical Time Warping for Joint Alignment of Multiple Curves

下一篇:Structured Sparse Regression via Greedy Hard-thresholding

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...