资源论文Threshold Learning for Optimal Decision Making

Threshold Learning for Optimal Decision Making

2020-02-05 | |  49 |   44 |   0

Abstract

 Decision making under uncertainty is commonly modelled as a process of competitive stochastic evidence accumulation to threshold (the drift-diffusion model). However, it is unknown how animals learn these decision thresholds. We examine threshold learning by constructing a reward function that averages over many trials to Wald’s cost function that defines decision optimality. These rewards are highly stochastic and hence challenging to optimize, which we address in two ways: first, a simple two-factor reward-modulated learning rule derived from Williams’ REINFORCE method for neural networks; and second, Bayesian optimization of the reward function with a Gaussian process. Bayesian optimization converges in fewer trials than REINFORCE but is slower computationally with greater variance. The REINFORCE method is also a better model of acquisition behaviour in animals and a similar learning rule has been proposed for modelling basal ganglia function.

上一篇:The Product Cut

下一篇:Learning the Number of Neurons in Deep Networks

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...