资源论文Asynchronous Parallel Greedy Coordinate Descent

Asynchronous Parallel Greedy Coordinate Descent

2020-02-05 | |  72 |   44 |   0

Abstract

 In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the second part, we develop an efficient kernel SVM solver based on Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully asynchronous—each core does not need to idle and wait for the other cores—the resulting algorithm enjoys good speedup and outperforms existing multi-core kernel SVM solvers including asynchronous stochastic coordinate descent and multi-core LIBSVM.

上一篇:Feature-distributed sparse regression: a screen-and-clean approach

下一篇:Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...