资源论文Nearly Isometric Embedding by Relaxation

Nearly Isometric Embedding by Relaxation

2020-02-05 | |  143 |   45 |   0

Abstract 

Many manifold learning algorithms aim to create embeddings with low or no distortion (isometric). If the data has intrinsic dimension d, it is often impossible to obtain an isometric embedding in d dimensions, but possible in s > d dimensions. Yet, most geometry preserving algorithms cannot do the latter. This paper proposes an embedding algorithm to overcome this. The algorithm accepts as input, besides the dimension d, an embedding dimension s image.png d. For any data embedding Y, we compute a Loss(Y), based on the push-forward Riemannian metric associated with Y, which measures deviation of Y from from isometry. Riemannian Relaxation iteratively updates Y in order to decrease Loss(Y). The experiments confirm the superiority of our algorithm in obtaining low distortion embeddings.

上一篇:Quantized Random Projections and Non-Linear Estimation of Cosine Similarity

下一篇:Interpretable Nonlinear Dynamic Modeling of Neural Trajectories

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...