资源论文Learning Infinite RBMs with Frank-Wolfe

Learning Infinite RBMs with Frank-Wolfe

2020-02-05 | |  37 |   44 |   0

Abstract

 In this work, we propose an infinite restricted Boltzmann machine (RBM), whose maximum likelihood estimation (MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse solution that can be interpreted as inserting a hidden unit at each iteration, so that the optimization process takes the form of a sequence of finite models of increasing complexity. As a side benefit, this can be used to easily and efficiently identify an appropriate number of hidden units during the optimization. The resulting model can also be used as an initialization for typical state-of-the-art RBM training algorithms such as contrastive divergence, leading to models with consistently higher test likelihood than random initialization.

上一篇:Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling

下一篇:Disentangling factors of variation in deep representations using adversarial training

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...