资源论文Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations

Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations

2020-02-05 | |  45 |   36 |   0

Abstract

 In many scientific and engineering applications, we are tasked with the optimisation of an expensive to evaluate black box function f . Traditional methods for this problem assume just the availability of this single function. However, in many cases, cheap approximations to f may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of f in a small but promising region and speedily identify the optimum. We formalise this task as a multi-fidelity bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret than strategies which ignore multi-fidelity information. MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.

上一篇:Optimistic Gittins Indices

下一篇:Generative Adversarial Imitation Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...