资源算法LearningToRememberRareEvents

LearningToRememberRareEvents

2019-09-20 | |  92 |   0 |   0

Code for the Memory Module as described in "Learning to Remember Rare Events" by Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio published as a conference paper at ICLR 2017.

Requirements: * TensorFlow (see tensorflow.org for how to install) * Some basic command-line utilities (git, unzip).

Description:

The general memory module is located in memory.py. Some code is provided to see the memory module in action on the standard Omniglot dataset. Download and setup the dataset using data_utils.py and then run the training script train.py (see example commands below).

Note that the structure and parameters of the model are optimized for the data preparation as provided.

Quick Start:

First download and set-up Omniglot data by running

python data_utils.py

Then run the training script:

python train.py --memory_size=8192 
  --batch_size=16 --validation_length=50 
  --episode_width=5 --episode_length=30

The first validation batch may look like this (although it is noisy):

0-shot: 0.040, 1-shot: 0.404, 2-shot: 0.516, 3-shot: 0.604,
  4-shot: 0.656, 5-shot: 0.684

At step 500 you may see something like this:

0-shot: 0.036, 1-shot: 0.836, 2-shot: 0.900, 3-shot: 0.940,
  4-shot: 0.944, 5-shot: 0.916

At step 4000 you may see something like this:

0-shot: 0.044, 1-shot: 0.960, 2-shot: 1.000, 3-shot: 0.988,
  4-shot: 0.972, 5-shot: 0.992

Maintained by Ofir Nachum (ofirnachum) and Lukasz Kaiser (lukaszkaiser).

链接:https://github.com/tensorflow/models/tree/master/research/learning_to_remember_rare_events



上一篇:KeypointNet

下一篇:LexNetc

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • allennlp-playground

    allennlp-playground