资源算法enet.pytorch

enet.pytorch

2020-02-06 | |  47 |   0 |   0

SENet.pytorch

An implementation of SENet, proposed in Squeeze-and-Excitation Networks by Jie Hu, Li Shen and Gang Sun, who are the winners of ILSVRC 2017 classification competition.

Now SE-ResNet (18, 34, 50, 101, 152/20, 32) and SE-Inception-v3 are implemented.

  • python cifar.py runs SE-ResNet20 with Cifar10 dataset.

  • python imagenet.py IMAGENET_ROOT runs SE-ResNet50 with ImageNet(2012) dataset.

    • You need to prepare dataset by yourself

    • First download files and then follow the instruction.

    • The number of workers and some hyper parameters are fixed so check and change them if you need.

    • This script uses all GPUs available. To specify GPUs, use CUDA_VISIBLE_DEVICES variable. (e.g. CUDA_VISIBLE_DEVICES=1,2 to use GPU 1 and 2)

For SE-Inception-v3, the input size is required to be 299x299 as the original Inception.

Pre-requirements

  • Python>=3.6

  • PyTorch>=1.0

  • torchvision>=0.3

For training

To run cifar.py or imagenet.py, you need

  • pip install git+https://github.com/moskomule/homura

  • pip install miniargs

hub

You can use some SE-ResNet (se_resnet{20, 56, 50, 101}) via torch.hub.

import torch.hub
hub_model = torch.hub.load(    'moskomule/senet.pytorch',    'se_resnet20',    num_classes=10)

Also, a pretrained SE-ResNet50 model is available.

import torch.hub
hub_model = torch.hub.load(    'moskomule/senet.pytorch',    'se_resnet50',    pretrained=True,)

Result

SE-ResNet20/Cifar10

python cifar.py [--baseline]

ResNet20SE-ResNet20 (reduction 4 or 8)
max. test accuracy92%93%

SE-ResNet50/ImageNet

The initial learning rate and mini-batch size are different from the original version because of my computational resource .


ResNetSE-ResNet
max. test accuracy(top1)76.15 %(*)77.06% (**)
# !wget https://github.com/moskomule/senet.pytorch/releases/download/archive/seresnet50-60a8950a85b2b.pklsenet = se_resnet50(num_classes=1000)
senet.load_state_dict(torch.load("seresnet50-60a8950a85b2b.pkl"))

References

paper

authors' Caffe implementation


上一篇:DSB2017-deepcoral

下一篇:SENet-Tensorflow

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...