资源算法senet-keras

senet-keras

2020-02-06 | |  43 |   0 |   0

SENet (Keras implementation)


New information

  • We provide a trained SEResNeXt model (training data: cifar10)
    Google drive
    You can try this model in evaluate-cifar10.ipynb.


Naive implementation of SENet models in Keras.

Prerequisites

  • nvidia-docker environment

Environment constuction

  • Build a docker image (on the root directory of the repository)

    $ docker build -t [tag name] -f docker/Dockerfile .
  • Create a container using the image

    $ nvidia-docker run -it -v $PWD:/work [tag name]

Train a model

  • Train a model with cifar10 data.

    (in the container) $ pwd
    /work
    (in the container) $ python train-cifar10.py

Note that this script is written in an insufficient way; use data generator in consideration of expansion to general image data). The training speed is slow. On a p3.2xlarge instance, it takes about 1.5 days.

Evaluate the model

  • Launch a jupyter notebook.

    (in the container) $ bash launch_notebook.sh
  • Execute evaluate-cifar10.ipynb notebook.

Results

  • Accuracy plot of train/val.

图片.png

上一篇:SENet.mxnet

下一篇:SENet-tensorflow-slim

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...