资源论文Sum-of-Squares Lower Bounds for Sparse PCA

Sum-of-Squares Lower Bounds for Sparse PCA

2020-02-07 | |  64 |   46 |   0

Abstract

 This paper establishes a statistical versus computational trade-off for solving a basic high-dimensional machine learning problem via a basic convex relaxation method. Specifically, we consider the Sparse Principal Component Analysis (Sparse PCA) problem, and the family of Sum-of-Squares (SoS, aka Lasserre/Parillo) convex relaxations. It was well known that in large dimension p, a planted k-sparse unit vector can be in principle detected using only image.png (Gaussian or Bernoulli) samples, but all efficient (polynomial time) algorithms known require image.png samples. It was also known that this quadratic gap cannot be improved by the the most basic semi-definite (SDP, aka spectral) relaxation, equivalent to a degree-2 SoS algorithms. Here we prove that also degree-4 SoS algorithms cannot improve this quadratic gap. This average-case lower bound adds to the small collection of hardness results in machine learning for this powerful family of convex relaxation algorithms. Moreover, our design of moments (or “pseudo-expectations”) for this lower bound is quite different than previous lower bounds. Establishing lower bounds for higher degree SoS algorithms for remains a challenging problem.

上一篇:Parallel Correlation Clustering on Big Graphs

下一篇:Robust Regression via Hard Thresholding

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...