资源论文Learning shape correspondence with anisotropic convolutional neural networks

Learning shape correspondence with anisotropic convolutional neural networks

2020-02-07 | |  53 |   36 |   0

Abstract 

Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to nonEuclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in challenging settings, achieving state-of-the-art results on recent correspondence benchmarks.

上一篇:Learning Parametric Sparse Models for Image Super-Resolution

下一篇:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...