资源论文Architectural Complexity Measures of Recurrent Neural Networks

Architectural Complexity Measures of Recurrent Neural Networks

2020-02-07 | |  37 |   32 |   0

Abstract 

In this paper, we systematically analyze the connecting architectures of recurrent neural networks (RNNs). Our main contribution is twofold: first, we present a rigorous graph-theoretic framework describing the connecting architectures of RNNs in general. Second, we propose three architecture complexity measures of RNNs: (a) the recurrent depth, which captures the RNN’s over-time nonlinear complexity, (b) the feedforward depth, which captures the local input-output nonlinearity (similar to the “depth” in feedforward neural networks (FNNs)), and (c) the recurrent skip coefficient which captures how rapidly the information propagates over time. We rigorously prove each measure’s existence and computability. Our experimental results show that RNNs might benefit from larger recurrent depth and feedforward depth. We further demonstrate that increasing recurrent skip coefficient offers performance boosts on long term dependency problems.

上一篇:How Deep is the Feature Analysis underlying Rapid Visual Categorization?

下一篇:Measuring Neural Net Robustness with Constraints

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...