资源论文Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments

Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments

2019-09-20 | |  98 |   51 |   0 0 0
Abstract In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macroaveraged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task

上一篇:Multi-Relational Script Learning for Discourse Relations

下一篇:Open Vocabulary Learning for Neural Chinese Pinyin IME

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...