资源论文Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions

Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions

2020-02-10 | |  61 |   38 |   0

Abstract 

We examine the Bayes-consistency of a recently proposed 1-nearest-neighbor-based multiclass learning algorithm. This algorithm is derived from sample compression bounds and enjoys the statistical advantages of tight, fully empirical generalization bounds, as well as the algorithmic advantages of a faster runtime and memory savings. We prove that this algorithm is strongly Bayes-consistent in metric spaces with finite doubling dimension — the first consistency result for an efficient nearest-neighbor sample compression scheme. Rather surprisingly, we discover that this algorithm continues to be Bayes-consistent even in a certain infinitedimensional setting, in which the basic measure-theoretic conditions on which classic consistency proofs hinge are violated. This is all the more surprising, since it is known that k-NN is not Bayes-consistent in this setting. We pose several challenging open problems for future research.

上一篇:On the Optimization Landscape of Tensor Decompositions

下一篇:Tractability in Structured Probability Spaces

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...