资源论文Recycling Privileged Learning and Distribution Matching for Fairness

Recycling Privileged Learning and Distribution Matching for Fairness

2020-02-10 | |  61 |   67 |   0

Abstract

 Equipping machine learning models with ethical and legal constraints is a serious issue; without this, the future of machine learning is at risk. This paper takes a step forward in this direction and focuses on ensuring machine learning models deliver fair decisions. In legal scholarships, the notion of fairness itself is evolving and multi-faceted. We set an overarching goal to develop a unified machine learning framework that is able to handle any definitions of fairness, their combinations, and also new definitions that might be stipulated in the future. To achieve our goal, we recycle two well-established machine learning techniques, privileged learning and distribution matching, and harmonize them for satisfying multi-faceted fairness definitions. We consider protected characteristics such as race and gender as privileged information that is available at training but not at test time; this accelerates model training and delivers fairness through unawareness. Further, we cast demographic parity, equalized odds, and equality of opportunity as a classical two-sample problem of conditional distributions, which can be solved in a general form by using distance measures in Hilbert Space. We show several existing models are special cases of ours. Finally, we advocate returning the Pareto frontier of multi-objective minimization of error and unfairness in predictions. This will facilitate decision makers to select an operating point and to be accountable for it.

上一篇:Multi-output Polynomial Networks and Factorization Machines

下一篇:End-to-End Differentiable Proving

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...