资源论文Scalable Log Determinants for Gaussian Process Kernel Learning

Scalable Log Determinants for Gaussian Process Kernel Learning

2020-02-10 | |  59 |   39 |   0

Abstract

 For applications as varied as Bayesian neural networks, determinantal point processes, elliptical graphical models, and kernel learning for Gaussian processes (GPs), one must compute a log determinant of an n × n positive definite matrix, and its derivatives – leading to prohibitive image.png computations. We propose novel image.png approaches to estimating these quantities from only fast matrix vector multiplications (MVMs). These stochastic approximations are based on Chebyshev, Lanczos, and surrogate models, and converge quickly even for kernel matrices that have challenging spectra. We leverage these approximations to develop a scalable Gaussian process approach to kernel learning. We find that Lanczos is generally superior to Chebyshev for kernel learning, and that a surrogate approach can be highly efficient and accurate with popular kernels.

上一篇:Compression-aware Training of Deep Networks

下一篇:PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...