资源论文Learning Neural Representations of Human Cognition across Many fMRI Studies

Learning Neural Representations of Human Cognition across Many fMRI Studies

2020-02-10 | |  67 |   43 |   0

Abstract 

Cognitive neuroscience is enjoying rapid increase in extensive public brain-imaging datasets. It opens the door to large-scale statistical models. Finding a unified perspective for all available data calls for scalable and automated solutions to an old challenge: how to aggregate heterogeneous information on brain function into a universal cognitive system that relates mental operations/cognitive processes/psychological tasks to brain networks? We cast this challenge in a machine-learning approach to predict conditions from statistical brain maps across different studies. For this, we leverage multi-task learning and multi-scale dimension reduction to learn low-dimensional representations of brain images that carry cognitive information and can be robustly associated with psychological stimuli. Our multi-dataset classification model achieves the best prediction performance on several large reference datasets, compared to models without cognitive-aware low-dimension representations; it brings a substantial performance boost to the analysis of small datasets, and can be introspected to identify universal template cognitive concepts.

上一篇:On Tensor Train Rank Minimization: Statistical Efficiency and Scalable Algorithm

下一篇:EEG-GRAPH: A Factor-Graph-Based Model for Capturing Spatial, Temporal, and Observational Relationships in Electroencephalograms

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...