资源论文Active Learning from Peers

Active Learning from Peers

2020-02-10 | |  79 |   64 |   0

Abstract 

This paper addresses the challenge of learning from peers in an online multitask setting. Instead of always requesting a label from a human oracle, the proposed method first determines if the learner for each task can acquire that label with sufficient confidence from its peers either as a task-similarity weighted sum, or from the single most similar task. If so, it saves the oracle query for later use in more difficult cases, and if not it queries the human oracle. The paper develops the new algorithm to exhibit this behavior and proves a theoretical mistake bound for the method compared to the best linear predictor in hindsight. Experiments over three multitask learning benchmark datasets show clearly superior performance over baselines such as assuming task independence, learning only from the oracle and not learning from peer tasks.

上一篇:A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning

下一篇:Streaming Sparse Gaussian Process Approximations

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Shape-based Autom...

    We present an algorithm for automatic detection...