资源论文PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

2020-02-10 | |  69 |   34 |   0

Abstract 

Generalized linear models (GLMs)—such as logistic regression, Poisson regression, and robust regression—provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy—including on an advertising data set with 40 million data points and 20,000 covariates.

上一篇:On the Fine-Grained Complexity of Empirical Risk Minimization:Kernel Methods and Neural Networks

下一篇:Overcoming Catastrophic Forgetting by Incremental Moment Matching

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...