资源论文Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

2020-02-10 | |  46 |   45 |   0

Abstract 

We introduce a solid harmonic wavelet scattering representation, invariant to rigid motion and stable to deformations, for regression and classification of 2D and 3D signals. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated at different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms with the complex modulus nonlinearity. We study an application of solid harmonic scattering invariants to the estimation of quantum molecular energies, which are also invariant to rigid motion and stable with respect to deformations. A multilinear regression over scattering invariants provides close to state of the art results over small and large databases of organic molecules.

上一篇:Shape and Material from Sound

下一篇:On-the-fly Operation Batching in Dynamic Computation Graphs

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...