资源论文Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent

Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent

2020-02-10 | |  51 |   51 |   0

Abstract 

We study the resilience to Byzantine failures of distributed implementations of Stochastic Gradient Descent (SGD). So far, distributed machine learning frameworks have largely ignored the possibility of failures, especially arbitrary (i.e., Byzantine) ones. Causes of failures include software bugs, network asynchrony, biases in local datasets, as well as attackers trying to compromise the entire system. Assuming a set of n workers, up to f being Byzantine, we ask how resilient can SGD be, without limiting the dimension, nor the size of the parameter space. We first show that no gradient aggregation rule based on a linear combination of the vectors proposed by the workers (i.e, current approaches) tolerates a single Byzantine failure. We then formulate a resilience property of the aggregation rule capturing the basic requirements to guarantee convergence despite f Byzantine workers. We propose Krum, an aggregation rule that satisfies our resilience property, which we argue is the first provably Byzantine-resilient algorithm for distributed SGD. We also report on experimental evaluations of Krum.

上一篇:Fisher GAN

下一篇:Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...