资源论文Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions

Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions

2020-02-10 | |  68 |   41 |   0

Abstract 

We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and the disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passive learning of intersections of halfspaces. Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.

上一篇:Recursive Sampling for the Nyström Method

下一篇:Working hard to know your neighbor’s margins: Local descriptor learning loss

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...