资源论文Communication-Efficient Distributed Learning of Discrete Probability Distributions

Communication-Efficient Distributed Learning of Discrete Probability Distributions

2020-02-10 | |  37 |   33 |   0

Abstract 

We initiate a systematic investigation of distribution learning (density estimation) when the data is distributed across multiple servers. The servers must communicate with a referee and the goal is to estimate the underlying distribution with as few bits of communication as possible. We focus on non-parametric density estimation of discrete distributions with respect to the image.png and image.png norms. We provide the first non-trivial upper and lower bounds on the communication complexity of this basic estimation task in various settings of interest. Specifically, our results include the following: 1. When the unknown discrete distribution is unstructured and each server has only one sample, we show that any blackboard protocol (i.e., any protocol in which servers interact arbitrarily using public messages) that learns the distribution must essentially communicate the entire sample. 2. For the case of structured distributions, such as k-histograms and monotone distributions, we design distributed learning algorithms that achieve significantly better communication guarantees than the naive ones, and obtain tight upper and lower bounds in several regimes. Our distributed learning algorithms run in near-linear time and are robust to model misspecification. Our results provide insights on the interplay between structure and communication efficiency for a range of fundamental distribution estimation tasks.

上一篇:Structured Bayesian Pruning via Log-Normal Multiplicative Noise

下一篇:Generative Local Metric Learning for Kernel Regression

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...