资源论文Testing and Learning on Distributions with Symmetric Noise Invariance

Testing and Learning on Distributions with Symmetric Noise Invariance

2020-02-10 | |  45 |   32 |   0

Abstract 

Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD), the resulting distance between distributions, are useful tools for fully nonparametric two-sample testing and learning on distributions. However, it is rare that all possible differences between samples are of interest – discovered differences can be due to different types of measurement noise, data collection artefacts or other irrelevant sources of variability. We propose distances between distributions which encode invariance to additive symmetric noise, aimed at testing whether the assumed true underlying processes differ. Moreover, we construct invariant features of distributions, leading to learning algorithms robust to the impairment of the input distributions with symmetric additive noise.

上一篇:Quantifying how much sensory information in a neural code is relevant for behavior

下一篇:Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...