资源论文Adaptive Accelerated Gradient Converging Method under Höderian Error Bound Condition

Adaptive Accelerated Gradient Converging Method under Höderian Error Bound Condition

2020-02-10 | |  107 |   36 |   0

Abstract 

Recent studies have shown that proximal gradient (PG) method and accelerated gradient method (APG) with restarting can enjoy a linear convergence under a weaker condition than strong convexity, namely a quadratic growth condition (QGC). However, the faster convergence of restarting APG method relies on the potentially unknown constant in QGC to appropriately restart APG, which restricts its applicability. We address this issue by developing a novel adaptive gradient converging methods, i.e., leveraging the magnitude of proximal gradient as a criterion for restart and termination. Our analysis extends to a much more general condition beyond the QGC, namely the Hölderian error bound (HEB) condition. The key technique for our development is a novel synthesis of adaptive regularization and a conditional restarting scheme, which extends previous work focusing on strongly convex problems to a much broader family of problems. Furthermore, we demonstrate that our results have important implication and applications in machine learning: (i) if the objective function is coercive and semialgebraic, PG’s convergence speed is essentially image.png, where t is the total number of iterations; (ii) if the objective function consists of an image.png or huber norm regularization and a convex smooth piecewise quadratic loss (e.g., square loss, squared hinge loss and huber loss), the proposed algorithm is parameter-free and enjoys a faster linear convergence than PG without any other assumptions (e.g., restricted eigen-value condition). It is notable that our linear convergence results for the aforementioned problems are global instead of local. To the best of our knowledge, these improved results are first shown in this work.

上一篇:On the Model Shrinkage Effect of Gamma Process Edge Partition Models

下一篇:Tensor Biclustering

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...