资源论文Dynamic Importance Sampling for Anytime Bounds of the Partition Function

Dynamic Importance Sampling for Anytime Bounds of the Partition Function

2020-02-10 | |  62 |   36 |   0

Abstract 

Computing the partition function is a key inference task in many graphical models. In this paper, we propose a dynamic importance sampling scheme that provides anytime finite-sample bounds for the partition function. Our algorithm balances the advantages of the three major inference strategies, heuristic search, variational bounds, and Monte Carlo methods, blending sampling with search to refine a variationally defined proposal. Our algorithm combines and generalizes recent work on anytime search [16] and probabilistic bounds [15] of the partition function. By using an intelligently chosen weighted average over the samples, we construct an unbiased estimator of the partition function with strong finite-sample confidence intervals that inherit both the rapid early improvement rate of sampling and the long-term benefits of an improved proposal from search. This gives significantly improved anytime behavior, and more flexible trade-offs between memory, time, and solution quality. We demonstrate the effectiveness of our approach empirically on real-world problem instances taken from recent UAI competitions.

上一篇:A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

下一篇:Positive-Unlabeled Learning with Non-Negative Risk Estimator

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...