资源算法GoogLeNet GPU implementation from Princeton.

GoogLeNet GPU implementation from Princeton.

2019-09-20 | |  105 |   0 |   0

We implemented GoogLeNet using a single GPU. Our main contribution is an effective way to initialize the network and a trick to overcome the GPU memory constraint by accumulating gradients over two training iterations.
* Please check http://3dvision.princeton.edu/pvt/GoogLeNet/ for more information. Pre-trained models on ImageNet and Places, and the training code are available for download.
* Make sure cls2_fc2 and cls3_fc have num_output = 1000 in the prototxt. Otherwise, the trained model would crash on test.

无链接

上一篇:Places-CNN model from MIT.

下一篇:CaffeNet fine-tuned for Oxford flowers dataset

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...