资源论文Approximation and Convergence Properties of Generative Adversarial Learning

Approximation and Convergence Properties of Generative Adversarial Learning

2020-02-10 | |  44 |   49 |   0

Abstract 

Generative adversarial networks (GAN) approximate a target data distribution by jointly optimizing an objective function through a "two-player game" between a generator and a discriminator. Despite their empirical success, however, two very basic questions on how well they can approximate the target distribution remain unanswered. First, it is not known how restricting the discriminator family affects the approximation quality. Second, while a number of different objective functions have been proposed, we do not understand when convergence to the global minima of the objective function leads to convergence to the target distribution under various notions of distributional convergence. In this paper, we address these questions in a broad and unified setting by defining a notion of adversarial divergences that includes a number of recently proposed objective functions. We show that if the objective function is an adversarial divergence with some additional conditions, then using a restricted discriminator family has a moment-matching effect. Additionally, we show that for objective functions that are strict adversarial divergences, convergence in the objective function implies weak convergence, thus generalizing previous results.

上一篇:Few-Shot Learning Through an Information Retrieval Lens

下一篇:Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...