资源论文Elementary Symmetric Polynomials for Optimal Experimental Design

Elementary Symmetric Polynomials for Optimal Experimental Design

2020-02-10 | |  71 |   42 |   0

Abstract 

We revisit the classical problem of optimal experimental design (OED) under a new mathematical model grounded in a geometric motivation. Specifically, we introduce models based on elementary symmetric polynomials; these polynomials capture “partial volumes” and offer a graded interpolation between the widely used A-optimal design and D-optimal design models, obtaining each of them as special cases. We analyze properties of our models, and derive both greedy and convex-relaxation algorithms for computing the associated designs. Our analysis establishes approximation guarantees on these algorithms, while our empirical results substantiate our claims and demonstrate a curious phenomenon concerning our greedy method. Finally, as a byproduct, we obtain new results on the theory of elementary symmetric polynomials that may be of independent interest.

上一篇:Lookahead Bayesian Optimization with Inequality Constraints

下一篇:Convolutional Gaussian Processes

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...