资源算法 fcn_satellite

fcn_satellite

2020-02-12 | |  51 |   0 |   0

WARNING: The end goal of the segmentation is region proposals for 3D points clouds. The network is not tuned for pixelwise accuracy. Instead, the network is tuned to overpredict roads and buildings because the cost for incorrectly labeling a pixel as background is very high for this specific application. This can be seen in action in the examples directory.

Implementation of a 3 class (background, roads, buildings) semantic segmentation for aerial satelite images using a FCN architecture and Caffe.

Significant portions of the following repositories were used:

  1. https://github.com/shelhamer/fcn.berkeleyvision.org (FCN architecture)

  2. https://github.com/mitmul/ssa (data download and pre-processing)

Path setup:

export PYTHONPATH="[path]/fcn_satellite/helper:$PYTHONPATH"

Data preparation:

cd scripts# download data./download.sh# create merged labels./merged.sh# create label txt files for each setcd [path]/fcn_satellite/data/mass_merged/{train/valid/test}/map
ls *.png>{train/valid/test}.txt# create input txt files for each setcd [path]/fcn_satellite/data/mass_merged/{train/valid/test}/sat 
ls>{train/valid/test}.txt# remove filename from end of txt files above

Download VGGconv weights (optional - generate yourself):

cd ilsvrc-nets# download weightsvim caffemodel_url # follow link and name convention in file

[ig_fcn8] Train weights (optional):

cd ig_fcn8
python H.py # optional - change the H  matrixpython net.py
python solve.py

[ig_fcn8] Download pre-trained weights:

cd ig_fcn8# download weightsvim caffemodel_url # follow link and name convention in file

Run model on input image:

python infer.py # change image file names


上一篇:FCN-4s-for-Building-Extraction

下一篇:caffe-R-FCN

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • tensorflow-sketch...

    Discrlaimer: This is not an official Google pro...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...