资源论文Spectrally-normalized margin bounds for neural networks

Spectrally-normalized margin bounds for neural networks

2020-02-12 | |  40 |   33 |   0

Abstract 

This paper presents a margin-based multiclass generalization bound for neural networks that scales with their margin-normalized spectral complexity: their Lipschitz constant, meaning the product of the spectral norms of the weight matrices, times a certain correction factor. This bound is empirically investigated for a standard AlexNet network trained with SGD on the mnist and cifar10 datasets, with both original and random labels; the bound, the Lipschitz constants, and the excess risks are all in direct correlation, suggesting both that SGD selects predictors whose complexity scales with the difficulty of the learning task, and secondly that the presented bound is sensitive to this complexity.

上一篇:Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition

下一篇:The Expressive Power of Neural Networks: A View from the Width

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...