资源论文Deep Recurrent Neural Network-Based Identification of Precursor microRNAs

Deep Recurrent Neural Network-Based Identification of Precursor microRNAs

2020-02-12 | |  53 |   40 |   0

Abstract

 MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) which play key roles in post-transcriptional gene regulation. Direct identification of mature miRNAs is infeasible due to their short lengths, and researchers instead aim at identifying precursor miRNAs (pre-miRNAs). Many of the known pre-miRNAs have distinctive stem-loop secondary structure, and structure-based filtering is usually the first step to predict the possibility of a given sequence being a pre-miRNA. To identify new pre-miRNAs that often have non-canonical structure, however, we need to consider additional features other than structure. To obtain such additional characteristics, existing computational methods rely on manual feature extraction, which inevitably limits the efficiency, robustness, and generalization of computational identification. To address the limitations of existing approaches, we propose a pre-miRNA identification method that incorporates (1) a deep recurrent neural network (RNN) for automated feature learning and classification, (2) multimodal architecture for seamless integration of prior knowledge (secondary structure), (3) an attention mechanism for improving long-term dependence modeling, and (4) an RNN-based class activation mapping for highlighting the learned representations that can contrast pre-miRNAs and non-pre-miRNAs. In our experiments with recent benchmarks, the proposed approach outperformed the compared state-of-the-art alternatives in terms of various performance metrics.

上一篇:Fast-Slow Recurrent Neural Networks

下一篇:Predictive State Recurrent Neural Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...