资源论文Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks

Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks

2020-02-12 | |  85 |   47 |   0

Abstract

 Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationary structures on user/item graphs, and the number of parameters to learn is linear w.r.t. the number of users and items. We propose a novel approach to overcome these limitations by using geometric deep learning on graphs. Our matrix completion architecture combines a novel multi-graph convolutional neural network that can learn meaningful statistical graph-structured patterns from users and items, and a recurrent neural network that applies a learnable diffusion on the score matrix. Our neural network system is computationally attractive as it requires a constant number of parameters independent of the matrix size. We apply our method on several standard datasets, showing that it outperforms state-of-the-art matrix completion techniques.

上一篇:Hiding Images in Plain Sight: Deep Steganography

下一篇:Unsupervised Image-to-Image Translation Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...