Abstract
Crowding is a visual effect suffered by humans, in which an object that can be recognized in isolation can no longer be recognized when other objects, called flankers, are placed close to it. In this work, we study the effect of crowding in artificial Deep Neural Networks (DNNs) for object recognition. We analyze both deep convolutional neural networks (DCNNs) as well as an extension of DCNNs that are multi-scale and that change the receptive field size of the convolution filters with their position in the image. The latter networks, that we call eccentricitydependent, have been proposed for modeling the feedforward path of the primate visual cortex. Our results reveal that the eccentricity-dependent model, trained on target objects in isolation, can recognize such targets in the presence of flankers, if the targets are near the center of the image, whereas DCNNs cannot. Also, for all tested networks, when trained on targets in isolation, we find that recognition accuracy of the networks decreases the closer the flankers are to the target and the more flankers there are. We find that visual similarity between the target and flankers also plays a role and that pooling in early layers of the network leads to more crowding. Additionally, we show that incorporating flankers into the images of the training set for learning the DNNs does not lead to robustness against configurations not seen at training.