资源论文Efficient Approximation Algorithms for String Kernel Based Sequence Classification

Efficient Approximation Algorithms for String Kernel Based Sequence Classification

2020-02-12 | |  84 |   37 |   0

Abstract 

Sequence classification algorithms, such as SVM, require a definition of distance (similarity) measure between two sequences. A commonly used notion of similarity is the number of matches between k-mers (k-length subsequences) in the two sequences. Extending this definition, by considering two k-mers to match if their distance is at most m, yields better classification performance. This, however, makes the problem computationally much more complex. Known algorithms to compute this similarity have computational complexity that render them applicable only for small values of k and m. In this work, we develop novel techniques to efficiently and accurately estimate the pairwise similarity score, which enables us to use much larger values of k and m, and get higher predictive accuracy. This opens up a broad avenue of applying this classification approach to audio, images, and text sequences. Our algorithm achieves excellent approximation performance with theoretical guarantees. In the process we solve an open combinatorial problem, which was posed as a major hindrance to the scalability of existing solutions. We give analytical bounds on quality and runtime of our algorithm and report its empirical performance on real world biological and music sequences datasets.

上一篇:Teaching Machines to Describe Images via Natural Language Feedback

下一篇:Deep Voice 2: Multi-Speaker Neural Text-to-Speech

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...