资源算法chainer-ClariNet

chainer-ClariNet

2020-02-13 | |  49 |   0 |   0

chainer-ClariNet

A Chainer implementation of ClariNet( https://arxiv.org/abs/1807.07281 ).

Results

Autoregressive WaveNet(Single Gaussian ver.) trained with VCTK Corpus

https://nana-music.com/sounds/04027269/

Student Gaussian IAF trained with LJ-Speech

https://nana-music.com/sounds/043ba7b4/

Requirements

I trained and generated with

  • python(3.5.2)

  • chainer (5.0.0b4)

  • librosa (0.6.2)

  • matplotlib (2.2.3)

  • tqdm (4.25.0)

Usage

download dataset

You can download VCTK Corpus(en multi speaker)/LJ-Speech(en single speaker) very easily via my repository.

set parameters

Almost parameters in params.py and teacher_params.py are same as params.py in my other repositories like VQ-VAE. If you modified params.py in AutoregressiveWavenet, you have to replace teacher_params.py with it to train student.

training

You can use same command in each directory.

(without GPU)
python train.py

(with GPU #n)
python train.py -g n

You can resume snapshot and restart training like below.(Now support AutoregressiveWaveNet only)

python train.py -r snapshot_iter_100000

Other arguments -f and -p are parameters for multiprocess in preprocessing. -f means the number of prefetch and -p means the number of processes. I highly recommend to modify -f to large number like 64. If GPU-Util is stil low, modify -p to large number like 8.

generating

python generate.py -i <input file> -o <output file> -m <trained model>

If you don't set -o, default file name result.wav is used. If you don't set -s, the speaker is same as input file that got from filepath.

Caution

I only check the results for

  • Autoregressive WaveNet(Single Gaussian ver.)

  • Student Gaussian IAF


上一篇:vsepp-project

下一篇:clarinet-demo.github.io

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...