资源论文How to Start Training: The Effect of Initialization and Architecture

How to Start Training: The Effect of Initialization and Architecture

2020-02-13 | |  63 |   38 |   0

Abstract 

We identify and study two common failure modes for early training in deep ReLU nets. For each, we give a rigorous proof of when it occurs and how to avoid it, for fully connected, convolutional, and residual architectures. We show that the first failure mode, exploding or vanishing mean activation length, can be avoided by initializing weights from a symmetric distribution with variance 2/fan-in and, for ResNets, by correctly scaling the residual modules. We prove that the second failure mode, exponentially large variance of activation length, never occurs in residual nets once the first failure mode is avoided. In contrast, for fully connected nets, we prove that this failure mode can happen and is avoided by keeping constant the sum of the reciprocals of layer widths. We demonstrate empirically the effectiveness of our theoretical results in predicting when networks are able to start training. In particular, we note that many popular initializations fail our criteria, whereas correct initialization and architecture allows much deeper networks to be trained.

上一篇:3D-Aware Scene Manipulation via Inverse Graphics

下一篇:Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...