资源论文Efficient Stochastic Gradient Hard Thresholding

Efficient Stochastic Gradient Hard Thresholding

2020-02-13 | |  59 |   40 |   0

Abstract 

Stochastic gradient hard thresholding methods have recently been shown to work favorably in solving large-scale empirical risk minimization problems under sparsity or rank constraint. Despite the improved iteration complexity over full gradient methods, the gradient evaluation and hard thresholding complexity of the existing stochastic algorithms usually scales linearly with data size, which could still be expensive when data is huge and the hard thresholding step could be as expensive as singular value decomposition in rank-constrained problems. To address these deficiencies, we propose an efficient hybrid stochastic gradient hard thresholding (HSG-HT) method that can be provably shown to have sample-size-independent gradient evaluation and hard thresholding complexity bounds. Specifically, we prove that the stochastic gradient evaluation complexity of HSG-HT scales linearly with inverse of sub-optimality and its hard thresholding complexity scales logarithmically. By applying the heavy ball acceleration technique, we further propose an accelerated variant of HSG-HT which can be shown to have improved factor dependence on restricted condition number in the quadratic case. Numerical results confirm our theoretical affirmation and demonstrate the computational efficiency of the proposed methods.

上一篇:Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding

下一篇:Fully Understanding The Hashing Trick

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...