资源论文Generative Modeling for Protein Structures

Generative Modeling for Protein Structures

2020-02-13 | |  66 |   48 |   0

Abstract

 Analyzing the structure and function of proteins is a key part of understanding biology at the molecular and cellular level. In addition, a major engineering challenge is to design new proteins in a principled and methodical way. Current computational modeling methods for protein design are slow and often require human oversight and intervention. Here, we apply Generative Adversarial Networks (GANs) to the task of generating protein structures, toward application in fast de novo protein design. We encode protein structures in terms of pairwise distances between ?-carbons on the protein backbone, which eliminates the need for the generative model to learn translational and rotational symmetries. We then introduce a convex formulation of corruption-robust 3D structure recovery to fold the protein structures from generated pairwise distance maps, and solve these problems using the Alternating Direction Method of Multipliers. We test the effectiveness of our models by predicting completions of corrupted protein structures and show that the method is capable of quickly producing structurally plausible solutions.

上一篇:Algebraic tests of general Gaussian latent tree models

下一篇:A Reduction for Efficient LDA Topic Reconstruction

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...