资源论文Generalizing graph matching beyond quadratic assignment model

Generalizing graph matching beyond quadratic assignment model

2020-02-13 | |  111 |   45 |   0

Abstract

 Graph matching has received persistent attention over several decades, which can be formulated as a quadratic assignment problem (QAP). We show that a large family of functions, which we define as Separable Functions, can approximate discrete graph matching in the continuous domain asymptotically by varying the approximation controlling parameters. We also study the properties of global optimality and devise convex/concave-preserving extensions to the widely used Lawler’s QAP form. Our theoretical findings show the potential for deriving new algorithms and techniques for graph matching. We deliver solvers based on two specific instances of Separable Functions, and the state-of-the-art performance of our method is verified on popular benchmarks.

上一篇:A Reduction for Efficient LDA Topic Reconstruction

下一篇:Stochastic Cubic Regularization for Fast Nonconvex Optimization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...