资源论文Learning to Navigate in Cities Without a Map

Learning to Navigate in Cities Without a Map

2020-02-13 | |  58 |   44 |   0

Abstract

 Navigating through unstructured environments is a basic capability of intelligent creatures, and thus is of fundamental interest in the study and development of artificial intelligence. Long-range navigation is a complex cognitive task that relies on developing an internal representation of space, grounded by recognisable landmarks and robust visual processing, that can simultaneously support continuous self-localisation (“I am here”) and a representation of the goal (“I am going there”). Building upon recent research that applies deep reinforcement learning to maze navigation problems, we present an end-to-end deep reinforcement learning approach that can be applied on a city scale. Recognising that successful navigation relies on integration of general policies with locale-specific knowledge, we propose a dual pathway architecture that allows locale-specific features to be encapsulated, while still enabling transfer to multiple cities. A key contribution of this paper is an interactive navigation environment that uses Google Street View for its photographic content and worldwide coverage. Our baselines demonstrate that deep reinforcement learning agents can learn to navigate in multiple cities and to traverse to target destinations that may be kilometres away. The project webpage http://streetlearn.cc contains a video summarizing our research and showing the trained agent in diverse city environments and on the transfer task, the form to request the StreetLearn dataset and links to further resources. The StreetLearn environment code is available at https://github.com/deepmind/streetlearn.

上一篇:Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels

下一篇:Learning Disentangled Joint Continuous and Discrete Representations

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...